30.03.2024

Аэродинамический полет без использования двигателя 12 букв. Виды летательных аппаратов. Классификация летательных аппаратов. Практическая аэродинамика с помощью KSP


Мечта о покорении воздушного пространства человеком отображается в легендах и преданиях практически всех народов населяющих Землю. Первые документальные свидетельства попыток человека поднять в воздух летательный аппарат относятся к первому тысячелетию до нашей эры. Тысячи лет попыток, труда и размышлений привело к полноценному воздухоплаванию только в конце 18 века, вернее к его развитию. Сначала появились монгольфьер, а следом и шарльер. Это два вида летательного аппарата легче воздуха — аэростата, в дальнейшем развитие аэростатной техники привело к созданию — дирижаблей. А на смену этим воздушным левиафанам пришли и аппараты тяжелее воздуха.

Примерно в 400 году до н. э. в Китае массово стали применяться воздушные змеи не только для развлечения, но и в сугубо военных целей, в качестве средства сигнализации. Этот аппарат уже можно охарактеризовать как устройство тяжелее воздуха, имеющее жесткую конструкцию и использующее для поддержания в воздухе аэродинамическую подъемную силу набегающего потока за счет струйных воздушных течений.

Классификация летательных аппаратов

Летательный аппарат — это какое-либо техническое устройство, которое предназначается для полетов в воздушном или космическом пространстве. В общей классификации различают аппараты легче воздуха, тяжелее воздуха и космические. В последнее время все более широко развивается направления конструирования смежных аппаратов, особенно создания гибрида воздушно — космического аппарата.

ЛА классифицироваться могут и иначе, например по следующим признакам:

  • по принципу действия (полета);
  • по принципу управления;
  • по предназначению и сферам применения;
  • по типу двигателей, установленных на ЛА;
  • по конструктивным особенностям, касающимся фюзеляжа, крыльев, оперения и шасси.

Кратко о летательных аппаратах.

1. воздухоплавательные ЛА. Считаются летательные аппараты легче воздуха. Воздушная оболочка наполнена легким газом. К ним относятся дирижабли, аэростаты и гибридные ЛА. Вся конструкция данного типа аппаратов всецело остается тяжелее воздуха, но из за разности плотностей газовых масс в и вне оболочки, создается разность давлений и как итог — выталкивающая сила, так называемая сила Архимеда.

2. ЛА, использующие аэродинамическую подъемную силу. Данный тип аппаратов считается уже тяжелее воздуха. Подъемная сила у них создается уже за счет геометрических поверхностей — крыльев. Крылья начинают поддерживать ЛА в воздушной среде только после того как вокруг их поверхностей начинают образовываться воздушные потоки. Таким образом крылья начинают работать после достижения ЛА определенной минимальной скорости «срабатывания» крыльев. На них начинает образовываться подъемная сила. Поэтому, например, чтобы подняться самолету в воздух или опуститься из него на землю, нужен пробег.

  • Планеры, самолеты, экранолеты и крылатые ракеты - это аппараты, у которых подъемная сила образуется при обтекании крыла;
  • Вертолеты и им подобные агрегаты, у них подъемная сила образуется за счет обтекания лопастей несущего винта;
  • ЛА, имеющие несущий корпус, созданный по схеме «летающее крыло»;
  • Гибридные - это аппараты вертикального взлета и посадки, как самолеты, так и винтокрылы, а также устройства совмещающие качества аэродинамических и космических ЛА;
  • Аппараты на динамической воздушной подушке типа экраноплан;

3. ко смические ЛА. Эти аппараты созданные специально для работы в безвоздушном пространстве с ничтожной гравитацией, а так же для преодоления силы притяжения небесных тел, для выхода в космическое пространство. К их числу относятся спутники, космические корабли, орбитальные станции, ракеты. Перемещение и подъемная сила создается за счет реактивной тяги, путем отбрасывания части массы аппарата. Рабочее тело так же образуется благодаря преобразованию внутренней массы аппарата, которая до начала полета еще состоит из окислителя и топлива.

Самые распространенные летательные аппараты - это самолеты. При классификации они подразделяются по многим признакам:

На втором месте по распространенности находятся вертолеты. Они также классифицируются по разным признакам например, по количеству и расположению несущих винтов:

  • имеющие одновинтовую схему, которая предполагает наличие дополнительного рулевого винта;
  • соосная схема - когда два несущих винта находятся на одной оси друг над другом и вращаются в разные стороны;
  • продольная - это когда несущие винты находятся на оси движения друг за другом;
  • поперечная - винты располагаются по бокам от фюзеляжа вертолета.

1,5 — поперечная схема, 2 — продольная схема, 3 — одновинтовая схема, 4 — соосная схема

Кроме того вертолеты можно классифицировать по назначению:

  • для пассажирских перевозок;
  • для боевого применения;
  • для применения в качестве транспортных средств при перевозке грузов различного назначения;
  • для различных сельскохозяйственных нужд;
  • для потребностей медицинского обеспечения и поисково-спасательных работ;
  • для применения в качестве воздушно-крановых устройств.

Краткая история авиации и воздухоплавания

Люди, серьезно занимающиеся историей создания летательных аппаратов, определяют, что какое-то устройство является ЛА, в первую очередь исходя из способности подобного агрегата поднять человека в воздух.

Самый первый из известных в истории полетов относится к 559 году нашей эры. В одном из государств на территории Китая приговоренного к смерти человека закрепили на воздушном змее и после запуска он смог пролететь над городскими стенами. Этот змей был скорее всего первым планером конструкции «несущее крыло».

В конце первого тысячелетия нашей эры на территории мусульманской Испании арабский ученый Аббас ибн Фарнас сконструировал и построил деревянный каркас с крыльями, который имел подобие органов управления полетом. Он смог взлететь на этом прообразе дельтаплана с вершины небольшого холма, продержаться в воздухе около десяти минут и вернуться к месту старта.

1475 год — первыми серьезными с научной точки зрения чертежами летательных аппаратов и парашюта считаются эскизы сделанные Леонардо да Винчи.

1783 год — совершен первый полет с людьми на воздушном аэростате Монгольфье, в этом же году в воздух поднимается аэростат с гелиевым наполнением шара и выполняется первый прыжок с парашютом.

1852 год — первый дирижабль с паровым двигателем выполнил успешный полет с возвращением в точку старта.

1853 год — в воздух поднялся планер с человеком на борту.

1881 — 1885 года — профессор Можайский получает патент, строит и испытывает самолет с паровыми двигателями.

1900 год — построен первый дирижабль Цеппелина с жесткой конструкцией.

1903 год — братья Райт выполняют первые реально управляемые полеты на самолетах с поршневым двигателем.

1905 год — создана Международная авиационная федерация (ФАИ).

1909 год — созданный год назад Всероссийский аэроклуб вступает в ФАИ.

1910 год — с водной поверхности поднялся первый гидросамолет, в 1915 году русский конструктор Григорович дает старт летающей лодке М-5.

1913 год — в России создан родоначальник бомбардировочной авиации «Илья Муромец».

1918 год, декабрь — организован ЦАГИ, который возглавил профессор Жуковский. Этот институт многие десятилетия будет определять направления развития российской и мировой авиационной техники.

1921 год — зарождается российская гражданская авиация, перевозящая пассажиров на самолетах «Илья Муромец».

1925 год — совершает полет АНТ-4, двухдвигательный цельнометаллический самолет-бомбардировщик.

1928 год — принят к серийному производству легендарный учебный самолет У-2, на котором будет подготовлено не одно поколение выдающихся советских летчиков.

В конце двадцатых годов был сконструирован и успешно испытан первый советский автожир — винтокрылый летательный аппарат.

Тридцатые годы прошлого века — это период различных мировых рекордов установленных на ЛА разного типа.

1946 год — в гражданской авиации появляются первые вертолеты.

В 1948 году рождается советская реактивная авиация — самолеты МиГ-15 и Ил-28, в этом же году появляется первый турбовинтовой самолет. Через год в серийное производство запускается МиГ-17.

Вплоть до середины сороковых годов XX столетия основным строительным материалом для ЛА были дерево и ткань. Но уже в первые годы второй мировой войны на смену деревянным конструкциям приходят цельнометаллические конструкции из дюралюминия.

Конструкция самолета

У всех летательных аппаратов есть схожие конструкционные элементы. Для воздушных аппаратов легче воздуха — одни, для аппаратов тяжелее воздуха — другие, для космических — третьи. Самая развитая и многочисленная ветка летательных аппаратов — это устройства тяжелее воздуха для полетов в атмосфере Земли. Для всех летательных аппаратов тяжелее воздуха есть основные общие черты, так как все аэродинамическое воздухоплавание и дальнейшие полеты в космос исходили с самой первой конструктивной схемы — схемы аэроплана, самолета по другому.

Конструкция такого ЛА как самолет, независимо от его типа или предназначения, имеет ряд общих элементов, обязательных для того, чтобы это устройство могло летать. Классическая схема выглядит следующим образом.

Планер самолета.

Этим термином называют цельную конструкцию, состоящую из фюзеляжа, крыльев и хвостового оперения. На самом деле — это отдельные элементы, имеющие разные функции.

а) Фюзеляж - это основная силовая конструкция самолета, к которой крепятся крылья, хвостовое оперение, двигатели и взлетно-посадочные устройства.

Корпус фюзеляжа собранный по классической схеме состоит из:
— носовой части;
— центральной или несущей части;
— хвостовой части.

В носовой части этой конструкции, как правило, располагается радиолокационное и радиоэлектронное самолетное оборудование и кабина экипажа.

Центральная часть несет основную силовую нагрузку, к ней крепятся крылья самолета. Кроме того, в ней располагаются основные топливные баки, проложены центральные электрические, топливные, гидравлические и механические магистрали. В зависимости от предназначения ЛА внутри центральной части фюзеляжа могут располагаться салон для перевозки пассажиров, транспортный отсек для размещения перевозимых грузов или отсек для размещения бомбового и ракетного вооружения. Возможны также варианты для топливозаправщиков, самолетов разведчиков или других специальных ЛА.

Хвостовая часть имеет также мощную силовую конструкцию, так как она предназначена для крепления к ней хвостового оперения. В некоторых модификациях самолетов на ней располагаются двигатели, а у бомбардировщиков типа ИЛ-28, ТУ-16 или ТУ-95 в этой части может располагаться кабина воздушного стрелка с пушками.

С целью уменьшения сопротивления трения фюзеляжа о набегающий воздушный поток выбирается оптимальная форма фюзеляжа с заостренными носом и хвостом.

Учитывая большие нагрузки на эту часть конструкции во время полета, он выполняется цельнометаллическим из металлических элементов по жесткой схеме. Основным материалом при изготовлении этих элементов является дюралюминий.

Основными элементами конструкции фюзеляжа являются:
— стрингеры — обеспечивающие жесткость в продольном отношении;
— лонжероны — обеспечивающие жесткость конструкции в поперечном отношении;
— шпангоуты — металлические элементы швеллерного типа, имеющие вид замкнутой рамы разного сечения, скрепляющие стрингеры и элероны в заданную форму фюзеляжа;
— внешняя обшивка — заранее заготовленные по форме фюзеляжа металлические листы из дюралюминия или композиционных материалов, которые крепятся на стрингеры, лонжероны или шпангоуты в зависимости от конструкции ЛА.

В зависимости от заданной конструкторами формы фюзеляж может создавать подъемную силу от двадцати до сорока процентов всей подъемной силы ЛА.

Подъемная сила, за счет которой ЛА тяжелее воздуха держится в атмосфере — это реально существующая физическая сила, образующаяся при обтекании набегающим воздушным потоком крыла, фюзеляжа и других элементов конструкции ЛА.

Подъемная сила прямо пропорциональна плотности среды, в которой образуется воздушный поток, квадрату скорости с которым движется ЛА и углу атаки, который образуют крыло и другие элементы относительно набегающего потока. Она также пропорциональна площади ЛА.

Самое простое и популярное объяснение возникновения подъемной силы это образование разницы давлений в нижней и верхней части поверхности.

б) Крыло самолета - это конструкция имеющая несущую поверхность для образования подъемной силы. В зависимости от типа самолета крыло может быть:
— прямым;
— стреловидным;
— треугольным;
— трапециевидным;
— с обратной стреловидностью;
— с переменной стреловидностью.

Крыло имеет центроплан, а также левую и правую полуплоскости, еще их можно называть консолями. В случае, если фюзеляж выполнен в виде несущей поверхности как у самолета типа Су-27, то имеются только левая и правая полуплоскости.

По количеству крыльев могут быть монопланы (это основная конструкция современных самолетов) и бипланы (примером может служить Ан-2) или трипланы.

По расположению относительно фюзеляжа крылья классифицируются как низкорасположенные, среднерасположенные, верхнерасположенные, «парасоль» (то есть крыло расположено над фюзеляжем). Основными силовыми элементами конструкции крыла являются лонжероны и нервюры, а также металлическая обшивка.

К крылу крепится механизация, обеспечивающая управление самолетом — это элероны с триммерами, а также имеющая отношение к взлетно-посадочным устройствам — это закрылки и предкрылки. Закрылки после их выпуска увеличивают площадь крыла, изменяют его форму, увеличивая возможный угол атаки на малой скорости и обеспечивают увеличение подъемной силы на режимах взлета и посадки. Предкрылки — это устройства для выравнивания воздушного потока и недопущения завихрений и срыва струи на больших углах атаки и малых скоростях. Кроме того, на крыле могут интерцепторы-элероны — для улучшения управляемости ЛА и интерцепторы-спойлеры — как дополнительная механизация уменьшающая подъемную силу и тормозящая ЛА в полете.

Внутри крыла могут размещаться топливные баки, например как у самолета МиГ-25. В законцовках крыла располагаются сигнальные огни.

в) Хвостовое оперение.

К хвостовой части фюзеляжа самолета крепятся два горизонтальных стабилизатора — это горизонтальное оперение и вертикальный киль — это вертикальное оперение. Эти элементы конструкции ЛА обеспечивают стабилизацию самолета в полете. Конструктивно они выполнены также как и крылья, только имеют значительно меньший размер. К горизонтальным стабилизаторам крепятся рули высоты, а к килю — руль поворота.

Взлетно-посадочные устройства.

а) Шасси — основное устройство относящиеся к этой категории.

Стойка шасси. Задняя тележка

Шасси самолета — это специальные опоры предназначенные для взлета, посадки, руления и стоянки ЛА.

Конструкция их достаточно проста и включает стойку с амортизаторами или без них, систему опор и рычагов обеспечивающих устойчивое положение стойки в выпущенном положении и быструю уборку ее после взлета. Также имеются колеса, поплавки или лыжи в зависимости от типа самолета и взлетно-посадочной поверхности.

В зависимости от расположения на планере возможны различные схемы:
— шасси с передней стойкой (основная схема для современных самолетов);
— шасси с двумя основными стойками и хвостовой опорой (примером может служить Ли-2 и Ан-2, в настоящее время практически не применяется);
— велосипедное шасси (такое шасси установлено на самолете Як-28);
— шасси с передней стойкой и выпускающейся при посадке задней штангой с колесиком.

Самой распространенной схемой для современных самолетов является шасси с передней стойкой и двумя основными. На очень тяжелых машинах основные стойки имеют многоколесные тележки.

б) Тормозная система. Торможение самолета после посадки осуществляется с помощью тормозов в колесах, спойлеров-интерцептеров, тормозных парашютов и реверса двигателей.

Двигательные силовые установки.

Самолетные двигатели могут размещаться в фюзеляже, подвешены на крыльях с помощью пилонов или размещены в хвостовой части самолета.

Конструктивные особенности других летательных аппаратов

  1. Вертолет. Способность взлетать вертикально и вертеться вокруг своей оси, зависать на месте и летать боком и задом. Все это характеристики вертолета и все это обеспечивается благодаря подвижной плоскости, создающая подъемную силу — это винт, который имеет аэродинамическую плоскость. Винт постоянно находится в движении, не зависимо от того с какой скоростью и в каком направлении происходит полет непосредственно вертолета.
  2. Винтокрыл. Особенностью этого ЛА является то, что взлет аппарата осуществляется за счет несущего винта, а набор скорости и горизонтальный полет — за счет классически расположенного пропеллера, установленного на ТВД, как у самолета.
  3. Конвертоплан. Эту модель ЛА можно отнести к аппаратам с вертикальным взлетом и посадкой, которые обеспечиваются поворотными ТВД. Они закреплены на концах крыльев и после взлета поворачиваются в самолетное положение, в котором создается тяга для горизонтального полета. Подъемная сила обеспечивается крыльями.
  4. Автожир. Особенность данного ЛА заключается в том, что во время полета он опирается на воздушную массу за счет свободно вращающегося винта в режима авторотации. В данном случае винты заменяют собой статичное крыло. Но для поддержания полета необходимо постоянно вращать винт, а он вращается от набегающего воздушного потока, поэтому аппарата, не смотря на винт необходима минимальная скорость для полета.
  5. Самолет вертикального взлета и посадки. Взлетает и садится при нулевой горизонтальной скорости, используя тягу реактивных двигателей, которая направлена в вертикальном направлении. В мировой авиационной практике это такие самолеты как Харриер и Як-38.
  6. Экраноплан. Это аппарат способный передвигаться на большой скорости, используя при этом эффект аэродинамического экрана, который позволяет этому ЛА держаться на высоте нескольких метров над поверхностью. При этом площадь крыла у этого аппарата меньше, чем у аналогичного самолета. ЛА использующий этот принцип, но способный подниматься на высоту в несколько тысяч метров называется экранолет. Особенностью его конструкции является более широкие фюзеляж и крыло. Такой аппарат имеет большую грузоподъемность и дальность полета до тысячи километров.
  7. Планер, дельтаплан, параплан. Это ЛА тяжелее воздуха, как правило безмоторные, которые для полета используют подъемную силу за счет обтекания воздушным потоком крыла или несущей поверхности.
  8. Дирижабль. Это аппарат легче воздуха, использующий для управляемого движения двигатель с винтом. Он может быть с мягкой, полужесткой и жесткой оболочкой. В настоящее время используется в военных и специальных целях. Однако целый ряд преимуществ, таких как дешевизна, большая грузоподъемность и ряд других, дают повод к дискуссиям о возврате этого вида транспорта в реальный сектор экономики.

Как самолет держится в воздухе

Род Мачадо

Мы часто пользуемся механическими приспособлениями, совершенно при этом не представляя, как они работают.

Когда я был молод и еще не успел обзавестись семьей, родители подарили мне на день рождения пылесос. Через несколько месяцев мне позвонила мама и спросила: "Знаешь, где найти мешки для пылесоса?". Я ответил: "Мешки? Какие мешки?".

Откуда мне было знать, что этой штуке необходимы мешки?

Техническая необразованность имеет свои преимущества, но только не в воздухе. Конечно, вам не обязательно быть доктором аэродинамических наук, чтобы стать пилотом, но знание основных принципов аэродинамики будет весьма полезным и даже может спасти жизнь. Именно поэтому самое первое занятие по наземной подготовке - самое длинное. Не волнуйтесь - вам не придется лечить глаза после того, как вы все это прочтете. Я настоятельно рекомендую вам прочитать все от начала до конца. Чтобы летать на самолете, нужно сначала зарядить мозги хотя бы каким-нибудь количеством информации. Сделать это лучше всего в течение данного занятия. Читайте и радуйтесь - ведь потраченное вами время в дальнейшем окупится с лихвой.

Да пребудут с вами 4 силы

Нет-нет, "4 силы" - это не название рок-группы 60-х. Это силы, которые тянут и толкают самолет в полете. 4 силы: подъемная сила, вес, тяга и сопротивление - действуют на самолет все то время, пока он находится в воздухе. Взгляните на рисунок 1-1, демонстрирующий действие четырех сил.

Разумеется, эти гигантские стрелки на самом деле не растут из самолета. Понимаю, это разочарует тех, кто все еще ожидает, что американские штаты во время полета будут раскрашены в синие и белые цвета, а вдоль их границ будут нарисованы линии. Но ничего страшного, вы привыкнете. Эти стрелки всего лишь демонстрируют захватывающую игру - перетягивание каната в четырех направлениях. Вы как пилот должны использовать имеющиеся у вас ресурсы, чтобы сбалансировать эти силы. Рассмотрим их подробнее.

Подъемная сила

Подъемная сила действует снизу вверх. Она появляется, когда крылья самолета движутся сквозь воздух. Движение вперед вызывает небольшую разницу между давлением воздуха на нижнюю и верхнюю поверхности крыла. Благодаря этой разнице давлений и возникает подъемная сила, удерживающая самолет в воздухе.

Впервые я испытал принцип действия подъемной силы в возрасте четырех лет, когда в первый раз попал в церковь. Передо мной пронесли тарелку с пожертвованиями, и я схватил с нее несколько блестящих штучек. Мой дедушка гонялся за мной вокруг скамьи, а я думал: "Ух ты, как весело в церкви!" Дедушка поймал меня за свитер, поднял над землей и вынес из церкви наружу. Именно подъемная сила дедушкиной руки, в точности равная моему весу, удержала меня в воздухе. Именно так и работают крылья на самолете - развивают подъемную силу, чтобы удержаться в воздухе.

Вес действует сверху вниз. Этой силой пилот может управлять в определенных пределах, изменяя загрузку самолета. За исключением веса сожженного топлива, вес самого самолета трудно изменить. Не будете же вы после взлета сжигать груз или подсаживать дополнительных пассажиров (или, наоборот, выбрасывать их за борт). Высадка пассажиров во время полета является нарушением какого-то правила Федерального управления гражданской авиации, поэтому не делайте так, пожалуйста.

В установившемся полете (то есть когда скорость и направление полета постоянны) подъемная сила и вес уравновешивают друг друга.

Тяга и сопротивление

Тяга - это сила, действующая вперед. Она вызвана воздушным винтом, который вращается двигателем. Как правило, чем больше двигатель (т.е. больше мощность), тем больше сила тяги, которую он вызывает и тем быстрее самолет долетит до пункта назначения. За движение вперед приходится платить так называемым аэродинамическим сопротивлением. Сила сопротивления действует назад. Она вызвана молекулярным сопротивлением атмосферы при движении сквозь нее. Говоря простым языком (пилоты и инженеры редко им пользуются), это сопротивление ветра. Мать-природа мало что дает даром. Как любит говорить один мой приятель: "Если ты что-то получаешь и ничего за это не платишь - значит, просто пользуешься чужой кредитной карточкой".

Тяга вызывает ускорение самолета, но конечная скорость определяется сопротивлением. При увеличении скорости увеличивается и сопротивление. Благодаря упрямству природы, увеличение скорости самолета в два раза вызывает увеличение сопротивления в четыре раза. В какой-то момент сопротивление уравновешивает тягу и достигается постоянная скорость.

Мой Фольксваген Жук времен старшей школы знал эти пределы. Его скорость была ограничена размером двигателя. Используя четыре маленьких цилиндра (причем в любой момент времени работали только три из них), Фольксваген попросту не мог разогнаться выше 65 миль в час. Рисунок 1-2 показывает, как максимальная сила тяги уравновешивается сопротивлением именно при этой скорости.

Чем меньше скорость движения, тем меньше требуется мощности, так как уменьшается сопротивление. Если скорость движения меньше максимальной, то образуется определенный запас тяги (мощности). Его можно использовать, например, для обгона. Или, может быть, для игры на свистках, если вы этим увлекаетесь.

Все это справедливо и для самолета. Если скорость горизонтального полета ниже максимальной, то появляется запас мощности (тяги). Его можно использовать для одного из важнейших авиационных маневров - набора высоты.

На этом вступительная часть закончена. Думаю, теперь самое время узнать кое-что об органах управления самолета.

Органы управления

Если вы готовый пилот, значит, вы терпеливо дожидались рассказа об органах управления. Ганди бы мог поаплодировать вашему терпению (но его здесь нет, поэтому поаплодирую я). На рисунке 1-3 изображены три воображаемые оси самолета.

Используя органы управления, можно заставить самолет вращаться вокруг одной или более осей. Продольная ось проходит вдоль центральной линии самолета от носа к хвосту. Вращение самолета вокруг продольной оси называется креном. Чтобы запомнить, в каком направлении проходит продольная ось самолета, используйте следующие ассоциации: продольная - долгая - длинная - ось, проходящая вдоль самого длинного измерения самолета.

В футболе пас в сторону еще может называться пасом поперек поля. Аналогично ось, проходящая от законцовки одного крыла до законцовки другого, называется поперечной . Тангаж - это вращение самолета вокруг поперечной оси.

Вертикальная ось направлена сверху вниз, от кабины самолета к его брюху. Вращение самолета вокруг этой оси называется рысканьем. Рысканье похоже на сонное потягивание - когда вы зеваете, вы вытягиваетесь в вертикальном направлении, при этом вращая туловище влево-вправо, чтобы размять позвоночник.

Теперь мы готовы подробно рассмотреть каждый из трех органов управления, вращающих самолет вокруг его осей.

Элероны - это подвижные аэродинамические поверхности, расположенные на внешней части задней кромки крыла. Они предназначены для накренения самолета в ту сторону, в которую необходимо поворачивать. При повороте штурвала вправо элероны одновременно отклоняются в противоположных направлениях, однако это вовсе не означает, что они сломаны (см. рис.1-4).

Левый элерон отклоняется вниз, вызывая увеличение подъемной силы на левом крыле. Правый элерон отклоняется вверх, вызывая уменьшение подъемной силы на правом крыле. Именно это и заставляет самолет накреняться вправо.

При повороте штурвала влево левый элерон отклоняется вверх, вызывая тем самым уменьшение подъемной силы на левом крыле (см. рис. 1-5).

Правый элерон отклоняется вниз, вызывая увеличение подъемной силы на правом крыле. Это заставляет самолет накреняться влево.

Элероны вызывают разницу между подъемными силами, действующими на разные крылья. Эта разница накреняет самолет, в результате чего суммарный вектор подъемной силы наклоняется в ту сторону, куда надо повернуть.

Руль высоты

Руль высоты - это подвижная горизонтальная поверхность в задней части самолета, предназначенная для подъема или опускания носа самолета (см. рис. 1-6).

Руль высоты действует так же, как и элероны. Отклонение штурвала на себя вызывает отклонение руля высоты вверх (см. рис. 1-6).

Под хвостовой частью возникает область пониженного давления, что вызывает движение хвоста вниз, а носа - вверх.

На рисунке 1-7 показано, что происходит с самолетом при отклонении штурвала вперед.

Руль высоты отклоняется вниз, вызывая падение давления над хвостовой частью, в результате чего хвост поднимается. Нос перемещается вниз относительно поперечной оси. Проще говоря, поднять нос можно, потянув штурвал на себя; опустить - отклонив штурвал от себя.

Есть еще и третий орган управления - руль направления. Он управляет рысканьем относительно вертикальной оси. Его мы рассмотрим позже, главное - знайте, что я о нем не забыл.

А сейчас, поскольку вы получили основное понятие о работе органов управления, перенесемся мысленно в самолет и поговорим о выполнении одного полезного маневра - горизонтального полета.

Горизонтальный полет

Вы вот-вот начнете отрабатывать горизонтальный полет - один из фундаментальных авиационных маневров. Этот маневр как бы состоит из двух: "полета по прямой" и "площадки". Полет по прямой - полет, во время которого нос самолета сохраняет одно и то же направление, а крылья параллельны горизонту. Площадка - полет без набора или потери высоты.

На рисунке 1-8 показано, как выглядит горизонтальный полет с левого кресла, где вы, пилот, обычно и сидите.



Рисунок 1-8

Ничего страшного, что на картинке мы летим в горы. Я с вами, и я умею обходить горы. Это, вообще-то, моя специальность.

Как определить, что вы летите по прямой

Итак, как вы узнаете, что перешли в горизонтальный полет? Самый простой способ - глянуть поверх приборной доски в ветровое стекло (так называется окно, расположенное впереди), как показано на рисунке 1-8. Видно, что верхняя часть приборной доски практически параллельна горизонту. Следовательно, самолет не накренен, а это значит, что вы летите по прямой, никуда не поворачивая.

Однако есть и другой способ определить это. Можно нажать переключатель видов джойстика (это переключатель, торчащий из джойстика под вашим большим пальцем). Если глянете в левое или правое окно, отметьте про себя положение каждого крыла относительно горизонта (см. рис. 1-9).


Рисунок 1-9

При полете по прямой оба крыла находятся на одинаковом расстоянии над горизонтом (именно над горизонтом, а не над горами).

Правильное пространственное положение

На настоящих самолетах я предпочитаю, чтобы курсанты практически сворачивали шеи, глядя то в левое окно, то в правое. Это учит их отмечать положение крыльев и сосредоточивать внимание на воздушном движении. Да-да, именно воздушном, а не автомобильном. Правда, в симуляторе неудобно постоянно переключать виды то влево, то вправо. Поэтому вы будете пользоваться авиагоризонтом для удержания самолета в горизонтальном полете. Авиагоризонт - прибор, расположенный в верхней части группы 6 основных приборов. Эта группа приборов находится прямо перед вами (см. рис. 1-10).



Рисунок 1-10

Авиагоризонт - это искусственное представление настоящего горизонта. Как следует из его названия, он отображает пространственное положение самолета (положительный или отрицательный тангаж и угол крена). Верхняя половина авиагоризонта окрашена в синий цвет (как настоящее небо, если вы, конечно, не летите над Лос-Анджелесом), нижняя половина - коричневая (как земная поверхность). Тонкая белая линия, разделяющая эти цвета - это линия искусственного горизонта. Пилоты пользуются авиагоризонтом, если они не видят горизонта из-за ограниченной видимости или если в данный момент неудобно следить за концами крыльев (именно так обычно и будет при полете в симуляторе).

При отклонении рычага управления влево самолет накреняется влево, наклоняя левое крыло к земле (см. рис. 1-11А).


Рисунок 1-11А

Рисунок 1-11В

Рисунок 1-11С

Именно так начинается левый разворот. Обратите внимание: маленький самолетик с оранжевыми крыльями на авиагоризонте тоже наклоняет левое крыло к земле. С точки зрения механики, на самом деле движется не самолетик, а шар авиагоризонта, отображая таким образом пространственное положение самолета. Тем не менее, вы всегда можете определить направление крена по тому, какое крыло на авиагоризонте наклоняется к земле (это просто, поскольку есть всего два варианта).

При плавном отклонении рычага управления вправо (так же, как было описано выше) авиагоризонт отобразит правый разворот. Теперь уже правое крыло оранжевого самолетика наклоняется к земле, как показано на рисунке 1-11В. Отклоните джойстик вправо или влево до тех пор, пока крылья маленького самолетика не будут параллельны линии авиагоризонта. Джойстик вернется в центральное положение (по умолчанию), а самолет - к полету по прямой (см. рис. 1-11С). Если крена нет - значит, самолет не поворачивается.

Главное - знать свой курс

Есть еще один способ определить, летите ли вы по прямой. Он заключается в использовании указателя курса (см. рис. 1-12).


Рисунок 1-12

На рисунке 1-12 показан указатель курса (его еще называют гирокомпасом). Он расположен в центре нижнего ряда шести основных приборов (их мы скоро рассмотрим). Указатель курса можно представить себе как механический компас, показывающий направление самолета. Взгляните на цифры на поверхности указателя. Мысленно прибавьте ноль к любой цифре - и получите действительное направление самолета. К примеру, цифра 6 в действительности обозначает курс 60 градусов (произносится "ноль-шесть-ноль"). Число 33 обозначает курс 330 градусов (когда мы произносим курс, мы говорим "курс три-три-ноль" для четкости. В полете очень важно произносить слова отчетливо). Цифры нанесены с интервалом в 30 градусов, между цифрами расположены метки, обозначающие интервалы в 5 и 10 градусов.

Для полета по заданному курсу просто разверните самолет по кратчайшему направлению на нужный курс. Например, если развернуться так, чтобы нос самолетика на указателе курса указывал на букву W, то это будет полет с курсом на запад (то есть с курсом 270). Понятно, что курс остается постоянным при полете по прямой, так как не выполняются развороты. Это еще один способ определить, что вы летите по прямой.

Теперь, когда вы узнали все о полете по прямой, можно перейти к рассмотрению второй составляющей горизонтального полета - к площадке.

Убедитесь в том, что высота постоянна

Поговорим о том, что происходит с высотой при изменении тангажа самолета. Если поднять нос самолета, потянув джойстик на себя, маленький самолетик на авиагоризонте тоже будет указывать на небо (синяя часть), как показано на рисунке 1-13А. Вертикальная шкала авиагоризонта размечена с шагом в 5 градусов, поэтому первые четыре метки (снизу вверх) обозначают тангаж в 5, 10, 15 и 20 градусов.


Рисунок 1-13

Взгляните на высотомер, расположенный справа от авиагоризонта (см. рис. 1-13В). Большая стрелка (обозначающая сотни футов) обычно движется по часовой стрелке при поднятом носе. Как и на часах, движение по часовой стрелке означает увеличение чего-либо. В данном случае - увеличение высоты.

Прямо под высотомером расположен вариометр - указатель вертикальной скорости. Его стрелка отклоняется вверх при поднятии носа, показывая при этом скорость набора высоты (см. рис. 1-13С). Это дополнительный способ определить, что вы набираете высоту, а не летите на фиксированной высоте.

При возврате джойстика в центральное положение самолет начнет возвращаться к полету по площадке (предполагается, что самолет правильно оттриммирован - это мы рассмотрим чуть позже).

При наклоне вниз самолетик на авиагоризонте будет указывать на земную поверхность (коричневую), как показано на рисунке 1-14.


Рисунок 1-14

Стрелка высотомера начнет вращаться против часовой стрелки, это обозначает потерю высоты. Стрелка вариометра отклонится вниз и будет показывать скорость снижения. Можно смело сказать: если стрелка высотомера не движется, а стрелка вариометра показывает ноль - значит, вы летите на фиксированной высоте. Это самый точный способ определения.

Нужна практика, чтобы удерживать эти стрелки неподвижными (в настоящем полете они всегда движутся, хотя бы чуть-чуть). Обычный пилот-любитель уже молодец, если удержит высоту в пределах +/- 100 футов (30 м). К сожалению, когда я был курсантом, я предпочитал постоянно менять заданную высоту, на которой я хотел бы лететь (это продолжалось, пока я наконец не натренировался).

В полете с инструктором вы потренируетесь выдерживать курс удержанием оранжевого самолетика на авиагоризонте параллельно линии искусственного горизонта. Если правое или левое крыло наклонится к земле, вы вернете его в исходное положение, отклонив джойстик в противоположную сторону.

Еще вы потренируетесь сохранять высоту, удерживая неподвижной большую стрелку высотомера. Она не должна двигаться. Если сдвинется - используйте джойстик для изменения тангажа, плавно, пока стрелка не остановится. Это и будет тангаж, необходимый для площадки.

Время для триммирования

Самолеты подвержены действию различных аэродинамических сил. Некоторые из них пытаются задрать самолету нос, некоторые - наоборот, опустить. Тяга двигателя, вес, подъемная сила - это лишь некоторые из этих сил. Что все это значит? Например, если самолет пытается опустить нос, то вы же не сможете весь полет тянуть штурвал на себя. Если постоянно тянуть штурвал на себя для поддержания тангажа, то ваши руки очень быстро устанут (возможно, ваш личный тренер и будет гордиться вами, но я - нет). К счастью, у самолетов есть одна вещь - триммер - для снятия усилия со штурвала (и с пилота). Посмотрим, как работает триммер, а потом поговорим о том, как им пользоваться.

Как работает триммер

Триммер - это маленькая подвижная поверхность, прикрепленная к той поверхности, которой вы хотите управлять (в нашем случае, это руль высоты). Рисунок 1-15А показывает триммер и его колесико, использующееся для изменения положения триммера. В настоящем самолете колесико обычно расположено между двумя передними сидениями или в нижней части приборной доски.

Движение триммера вызывает небольшую разницу давлений на конце аэродинамической поверхности, к которой триммер прикреплен. Образуется давление, достаточное для удержания основной поверхности в нужном положении, без необходимости удерживать при этом штурвал. Обратите внимание - триммер отклоняется в сторону, противоположную той, куда отклонена основная поверхность. Если хотите отклонить руль высоты вверх (как если бы вы потянули штурвал на себя), триммер надо отклонить вниз, как показано на руле высоты А (см. рис. 1-15А).

Для удержания руля высоты отклоненным вниз (как при снижении) триммер должен быть отклонен вверх, как показано на руле высоты (см. рис. 1-15В).



Рисунок 1-15В. Как работает триммер. 1 - нос опускается; 2 - нос поднимается.

Триммер - это как бы воображаемая рука, удерживающая самолет в заданном положении и снимающая усилие, которое вы прикладываете к штурвалу. Элемент управления триммером может быть на вашем джойстике в виде колесиков или кнопок.

Если на вашем джойстике нет кнопок управления триммером, можно использовать две клавиши на цифровой клавиатуре для триммирования самолета. Клавиша END триммирует самолет вверх, клавиша HOME - вниз.

Посмотрим, как оттриммировать самолет для горизонтального полета. Во-первых, проверьте, не оттриммирован ли уже самолет. Это можно сделать, уменьшив отклонение джойстика. Следите за стрелкой вариометра. Если стрелка показывает набор высоты - необходимо триммирование вниз. Отклоните джойстик чуть больше от себя для возврата к площадке и нажмите HOME один раз для небольшого триммирования вниз (или используйте кнопку триммирования вниз). После этого уменьшите отклонение джойстика и смотрите, что произойдет.

Чем дольше вы нажимаете кнопку триммирования, тем больше отклонение триммера. Будьте терпеливы. Возможно, вам придется повторить процедуру несколько раз, прежде чем стрелка вариометра займет почти горизонтальное положение (около нулевого значения).

Если стрелка вариометра покажет снижение (т.е. будет отклоняться вниз), чуть-чуть потяните джойстик на себя, чтобы вернуться к горизонтальному полету. После чего несколько раз нажмите END для триммирования вверх (или используйте кнопку триммирования вверх). Затем уменьшите отклонение джойстика и взгляните на реакцию стрелки вариометра. При необходимости повторяйте процедуру до тех пор, пока самолет не будет ни снижаться, ни набирать высоту.

Я предпочитаю смотреть на стрелку вариометра при триммировании, так как этот прибор весьма чувствителен. Чувствителен не в том смысле, что может заплакать, если вы скажете ему, что он отвратительно выглядит, а в том смысле, что он реагирует на мельчайшие изменения тангажа. Это облегчает определение отклонения от горизонтального полета. На следующем занятии я покажу, как используется стрелка вариометра для триммирования в наборе высоты или в снижении.

Многие самолеты можно триммировать в крене с помощью триммера элеронов. Возможно на вашем джойстике есть соответствующие элементы управления. Триммер крена может пригодиться при неравномерной загрузке топливных баков или если пассажиры перевешивают с какой-либо стороны.

Оттриммирован самолет или нет - он все равно может совершать маленькие колебания вверх и вниз, при этом отклонение высоты может составить до 100 футов (30 м). Такие уж они, самолеты. Каждый любит своевольничать и может отклоняться как по высоте, так и по курсу, даже если он правильно оттриммирован. Не мешайте самолету, если, конечно, отклонения не будут очень уж большими. Ваша задача - облегчить себе полет настолько, насколько возможно, чтоб было время думать, планировать и систематизировать свои способы безопасно летать на симуляторе.

Можете собой гордиться, так как вы завершили свою первую наземную подготовку. Лично я вами горжусь! Настало время полета с инструктором.

Щелкните Начать учебный полет для отработки изученного материала. Во время следующей наземной подготовки я познакомлю вас с основами выполнения разворотов.

Вопрос проведения теоретических занятий для школьников по авиационному профилю может стать головной болью для преподавателя, а может подвигнуть его на творческие дела в плане разнообразия теоретического курса. Мой опыт преподавания занятий в тренажерном классе в качестве инструктора – тренажера планера для школьников побудил меня к такому поиску.

Вряд ли школьникам будут интересны теоретические выводы уравнения Бернулли, а также законы Гей-Люсака и Бойля-Мариотта вместе взятых. Гораздо интереснее показывать что-то на практическом примере, например, запустить планер и объяснить, почему он летит именно по такой траектории, а не по другой. Именно с этим вопросом столкнулся ваш покорный слуга, когда сочинял теоретические лекции для курса «Основы пилотирования самолёта через планер», связанный с полётами на планерном тренажере.

Мои поиски привели меня к статье «Основы авиамоделирования», по мотивам симулятора KSP, где простым и понятным для всех языком были описаны аэродинамические истины с их практическим применением. Предлагаю всем желающим погрузиться в основы аэродинамики и проектирования летательных аппаратов, а если появиться желание то и самому испытать это в игре. В качестве проводника в основы аэродинамики будет выступать мистер Кептин и игровое пространство программы KSP. Оригинал статьи можно найти по адресу: www.forum.kerbalspaceprogram.com.

Практическая аэродинамика с помощью KSP

KSP – это игра, в которой игроки создают и управляют своими собственными космическими программами. Строительство челноков, управление ими и запуск миссий в открытый космос – вот пространство для творчества в KSP.

Хотите построить ракету и облететь планету, пожалуйста, есть все необходимые инструменты. Вопрос в другом: хватит ли топлива, выдержит ли шасси при посадке, туда ли опустится спасательная капсула. Вообщем все вопросы технического плана, а также самостоятельного управления построенными летательными аппаратами, игроку придется брать на себя. При желании ещё можно обременить себя финансовым бременем, и получать субсидии на космонавтику взамен на полезные исследования разного уровня. В качестве перспектив для развития есть возможность осуществить выход человека в открытый космос, создать космическую станцию, а даже основать колонию-поселение на другой планете.

Одно из дополнений к игре связано с созданием самолётов: собрать самолёт из отдельных частей, запустить и посмотреть, что из этого получится. Свобода творчества и, в результате, понимание законов аэродинамики. Поскольку после нескольких неудач на посадке конструктор начнет думать головой по поводу усиления стойки шасси, либо облегчения конструкции.

Если кому-то интересно, вот так выглядит урок по созданию самолёта:

Игра постоянно обновляется. Обновления и нововведения происходят возможно даже сейчас, а на сайте лежит новый мод, когда вы читаете эти строки. Для знакомства с программой достаточно скачать с сайта игры демоверсию.

Что такое центр давления и почему его сравнивают с центром масс

Прежде чем перейти к моделированию самолетов стоит немного погрузиться в теорию аэродинамики. Размышления на эту тему уместно начать с вопроса: «Что такое центр давления?». Центр давления – это точка, к которой приложена суммарная подъемных сил разных частей самолёта: крыльев и хвостового оперения.

На рисунке показаны аэродинамические поверхности, которые создают подъемную силу. Суммарная подъемная сила находится в точке, которая называется центром давления.

В том случае, если центр тяжести будет находиться слишком близко к центру масс, летательный аппарат может стать чрезмерно маневренным (другими словами «нейтрально стабильным»), поскольку у него будут отсутствовать естественные тенденции к стремлению двигаться в любом направлении. Вообще желательно стремиться к тому, чтобы центр давления находился позади центра тяжести. В этом случае летательный аппарат будет стремиться падать вперед.

Правила центров

Если Ц.Д. впереди Ц.М., то летательный аппарат подвержен внезапным переворотам, если Ц.Д. и Ц.М. совпали, то летательный аппарат имеет чрезмерную маневренность, если Ц.Д. находится немного позади Ц.Т., то летательный аппарат будет иметь высокую маневренность, если немного подальше, то в полёте будет появляться большая устойчивость, если сильно дальше, то получится дротик для дартс.

Если взять картонную модель самолета и подвесить его на нитке к потолку, то точка, в которой самолёт крепится к нитке, и будет являться центром давления.

Если вы строите летательный аппарат, у которого Ц.Д. находится сильно впереди Ц.М., то это очень близко походит на крепление носа самолёта за нитку. Каждый раз при взлете он будет стремиться перевернуться вверх носом. В то же время, если Ц.Д. у самолёта находится несколько ниже Ц.М., то при взлёте летательный аппарат будет стремиться перевернуться вверх тормашками.


Местоположение и ориентация подъемных поверхностей определяет центр давления. К нему мы вернемся через некоторое время.… Но сначала перейдем к рассмотрению ещё одной потенциально важной силы и точки её приложения – центра тяги (Ц.Т.).

Центр тяги – это точка приложения всех суммарных сил тяги, действующих на летательный аппарат. Если у летательного аппарата один двигатель, то Ц.Т. будет находиться как раз в центре двигателя.

Все прекрасно, но только до тех пор, пока центр тяги вашего двигателя находится на одной линии с центром масс летательного аппарата. Что если это не так… В этом случае уместно говорить про несимметричную тягу.

Вот тут и начинаются различные конфузы:

Действие несимметричного центра тяги можно сравнить по действию с моментом от приложения гаечного ключа. Негативные последствия от такого вмешательства можно приуменьшить работой плоскостей управления или увеличением подъемной силы. Но здесь заключен подвох: эффективность аэродинамических поверхностей меняется в зависимости от высоты полёта и плотности воздуха.

Так что с изменением скорости и высоты полёта также должны меняться и другие характеристики летательного аппарата (например, с помощью системы автоматической стабилизации полёта САСП).

Именно поэтому у всех успешных проектов космических кораблей центр масс располагается на одной линии с центром тяги.


Рассмотрим подробнее плоскости управления летательным аппаратом: движущиеся узлы, которые позволяют управлять положением летательного аппарата. Все они действуют как рычаги на центр масс, причем, чем дальше точка приложения сил от центра масс, тем большее усилие можно создать.


Органы управления на рисунке – это элевоны, гибрид элеронов и рулей высоты. Контрольные плоскости создают подъёмную силу, но они также создают сопротивление воздуха. Элевоны уменьшают количество деталей, таким образом уменьшая суммарное сопротивление. Перебирая всевозможные варианты сочетаний плоскостей управления можно увидеть их плюсы и минусы.

Каждому самолёту свои крылья

Перейдем к магическому слову – крылья! Начнем знакомство с соотношения сторон: размах, поделенный на хорду (отношение длины и ширины).

Каждая из представленных схем летательных аппаратов имеет одинаковую площадь, но разную форму. Каждая форма имеет свои преимущества и недостатки. Эти различия становятся ещё более поразительными, если подключить модуль Ferram Aerospace Research, который будет показывать более реалистичную модель сопротивлений.

Вернемся к вопросу стреловидности крыльев: угол, под которым находится крыло по отношению к фюзеляжу. Все видели ловкие истребители, но на что на самом деле влияет стреловидность крыла.

Когда скорость самолёта становится близка к скорости звука, ударные волны становятся сверхзвуковыми. Стреловидность крыльев уменьшает сопротивление на околозвуковых скоростях, поскольку изгиб крыла уменьшает лобовое сопротивление, что можно увидеть по воздушному потоку.

Наикратчайшее расстояние между двумя точками – это прямая. Поскольку воздушный поток через стреловидное крыло проделывает больший путь, чем через прямое крыло и контур крыла, который пересекает поток, не выглядит как стенка, то ударных волн в случае со стреловидным крылом не создается.

Что касается игры KSP, то в стандартной версии эффект стреловидности не играет большого эффекта. Этим эффектом можно насладиться в дополнительной версии игры, которая называется Ferram Aerospace Research.

Идем дальше…. Рассматриваем крепление крыла и поперечный угол крыла, то есть угол наклона крыла. Если центр давления располагается над центром масс, то повышается устойчивость летательного аппарата. Перенос же крыльев наверх фюзеляжа создает стабилизирующий эффект для летательного аппарата, который носит название поперечного эффекта.

Следовательно, если центр давления располагается ниже центра масс, либо крылья переносятся вниз фюзеляжа, то самолёт становится более маневренный, но менее устойчивым в полёте.

Устойчивость летательного аппарата можно контролировать переносом крыльев выше – ниже относительно фюзеляжа, другими словами переносом центра масс.

Практическое применение комбинаций крыльев и центров масс:

Наконец, короткий экскурс в тему увеличения подъемной силы в игре KSP. Этого можно добиться следующим путём:

  • Добавить площадь крыльям
  • Увеличить скорость

Увеличение количества крыльев, как и их площади, приведет к увеличению лобового сопротивления и к замедлению самолёта, с одной стороны. С другой стороны, это приведет к снижению скорости сваливания и минимальной скорости полёта, а, следовательно, уменьшению взлетной и посадочной дистанций.

Слишком большое количество крыльев и плоскостей управлений приведет к тому, что летательным аппаратом придется сложнее управлять: малейшие колебания на ручке управления будут вызывать сильные изменения в направлении полёта. Масса самолёта и его желаемая крейсерская скорость полёта (сваливания) будут определять количество подъемных сил, требуемых для самолёта.

Чем круче угол атаки, тем больше подъемная сила. Но это правило работает до некоторых пор: «до критического угла атаки». После достижения критического угла аэродинамический поток начинает переходить в срыв, а самолёт теряет подъемную силу. В KSP угол атаки становится критическим при 20°, в зависимости от модели.

Также стоит рассказать про «углом падения». Угол падения — это угол, под которым крыло находится относительно фюзеляжа. Рост этого угла увеличивает абсолютное значение угла атаки и повышает подъемную силу, но в тоже время увеличивает лобовое сопротивление.

Кому-то может показаться: «Оно того стоит!». Но конструкция крыла становится сложнее и изменяется характер полёта. Крыло с положительным углом атаки имеет отличающиеся подъемные свойства по сравнению с горизонтальным крылом. Другими словами подъемная тяга у такого крыла становится гораздо больше, чем у крыла с горизонтальным расположением.

Поскольку основное крыло создает чрезмерно большую подъемную силу, по сравнению с хвостовым стабилизатором, пилоту придется опускать вниз рычаг управления самолётом или работать триммером на хвостовом оперении, но лишь бы не дать самолёту подняться вверх. И наоборот, ручку убирать на себя в том случае, если нос самолёта опуститься слишком низко.

В Kerbal Space Program летательный аппарат, спроектированный с нулевым углом падения, проще поддается контролю, но имеются также доводы в пользу изменения этого угла:

  • можно заранее установить идеальный крейсерский угол тангажа
  • нет необходимости задирать резко тангаж вверх во время взлета (для предотвращения удара хвостом)

В тексте прозвучало упоминание про «крейсерский режим полёта»: это относится к режиму, в котором летательный аппарат будет вести себя лучше всего. Если самолёт не находится в таком режиме полёта, то все его узлы и сам полёт не будут находиться в оптимальном режиме: повышенный расход топлива, увеличенный износ двигателя. Изначально в конструкции все закладывается именно исходя из условий полёта в оптимальных условиях: оперение, двигатели, площадь крыльев, материалы и многое другое рассчитывается на полёт в оптимальных условиях.

С чего начать проектировать шасси

Теперь перейдем к вопросу конфигурации шасси, вот некоторые варианты:

Конфигурация «трицикл» проще в регулировке, чем четырехколесная: её проще посадить, чем конфигурацию с опорой на хвостовое колесо.

Правильный подход при проектировании заключается в том, чтобы разместить заднее шасси прямо под центром масс. В таком случае летательный аппарат может свободно разворачиваться и набирать нужный угол атаки при взлете.

Если по некоторым причинам появляется необходимость размещать заднее колесо дальше от центра масс, тогда стоит задуматься над тем, чтобы разместить его несколько выше переднего шасси. В этом случае мы получил заранее положительный угол атаки и, как следствие, упростим взлет летательного аппарата.

Посадочные шасси должны быть расположены так, чтобы для взлёта требовалось от пилота лишь минимальное усилие на ручке.

Самолёты с хвостовым оперением взлетают именно по этому принципу: сама схема такого самолёта гарантирует автоматический взлет при достижении определенной скорости.



Отклонение от курса при посадке может обозначать одно из двух:

  1. Взлетно-посадочная полоса не является прямой на самом деле, поскольку шасси располагается перпендикулярно «взлётке» и смотрят строго вперед.
  2. Чрезмерный вес, приходящийся на одно из шасси, может привести к прогибу стойки и, как следствие, уводу самолёта с траектории.
  3. Также слишком большая прижимная сила на одном из шасси приведет к тому, что остальные не будут полностью находиться в зацеплении с площадкой. Этот эффект называется «колеса тачки».

Возможные способы решения этой задачи:

  • Выправить стойку шасси в редакторе
  • Укрепить стойку шасси с помощью подкоса
  • Распределить вес на большое число стоек шасси
  • Снизить вес на шасси с помощью облегчения конструкции самолёта
  • Сделать большие шасси и преодолеть усилия в рулевом управлении

Лобовое сопротивление и его влияние на параметры самолёта


В программе KSP используется простая модель лобового сопротивления. Чем больше массы будет добавлено (в виде деталей), тем больше будет создаваться сопротивление воздуха, независимо от того, находится ли модель в воздушном потоке или нет.

Каждая деталь имеет максимальное значение лобового сопротивления (в большинстве случаев это значение 0,2 от максимального). Значение лобового сопротивления можно посчитать по заданной формуле:

Лобовое сопротивление = Плотность воздуха * Скорость(в квадрате) * Коэффициент максимального сопротивления * Массу

Заметьте, что лобовое сопротивление зависит от массы и от коэффициента и не зависит от числа деталей. Уменьшение массы приведет к улучшению аэродинамики. Конструирование аэродинамического профиля часто сводится к как можно большему уменьшению количества деталей, а также двигателей, плоскостей управления, топливных баков, но при сохранении управляемости летательного аппарата.


Если вы хотите преуспеть в том, что изображено на картинках, Вам следует воспользоваться модом KSP, который более реалистично подходит к расчету лобового сопротивления. Этот мод называется Ferram Aerospace Research. Я люблю Ferram, именно поэтому я устанавливаю его везде, где только можно.

Надеюсь, это повествование зарядило Вас энтузиазмом для того, чтобы творить и создавать свои собственные самолёты и космические корабли! Удачи!

Человек имел возможность наблюдать и изучать свободнолетающие «аппараты» задолго до создания первого самолета - у него перед глазами всегда был пример летящей птицы. В легендах любого народа можно найти сказочного героя, способного перемещаться по воздуху, причем способы эти чрезвычайно разнообразны.

Столь же разнообразными были и представления о механизме полета птиц. Высказывалось даже предположение, что подъемная сила крыла вызывается электрическими зарядами, возникающими на распущенных перьях, когда птица раскрывает крылья.

Однако полет на аппарате тяжелее воздуха стал возможен совсем недавно (по меркам человеческой истории) и более чем через сто лет после первого полета на воздушном шаре (аэростате) братьев Монгольфье.

Планеры, или безмоторные летательные аппараты

Наблюдения за парением птиц привели к экспериментам с использованием восходящих воздушных потоков и созданию планеров . Однако серьезным недостатком планера как транспортного средства является то, что он не способен взлететь самостоятельно.

В 1891 году Отто Лилиенталь изготовил планер из ивовых прутьев, обтянутых тканью. За период с 1891-го по 1896 год им было совершено до 2000 полетов. 9 августа 1896 года Отто Лилиенталь погиб. Копию его аппарата можно увидеть в музее Н. Е. Жуковского в Москве на ул. Радио.

Планеризм был популярен в 30-х годах XX века. С проектов планеров начинало большинство известных авиаконструкторов, например О. К. Антонов, С. П. Королев, А. С. Яковлев. Применение современных материалов и аэродинамических форм привело к тому, что в условиях устойчивых восходящих потоков, например в горной местности, планеры способны совершать многочасовые и даже многосуточные полеты.

Аэродинамические схемы планеров стали основой для аппаратов тяжелее воздуха, приводимых силой мышц человека, - «мускулолетов», а также других аппаратов с малой скоростью полета.

Потомками планеров являются «дельтапланы» и «парапланы». Парапланерный спорт в настоящее время чрезвычайно популярен.

Уменьшенные модели парапланов используются как спортивный снаряд для буксировки горных и водных лыжников. Подобный аппарат можно изготовить самостоятельно даже в домашних условиях.

Попытки создать летательный аппарат, способный самостоятельно взлетать, садиться в заданной точке и снова оттуда взлетать, оканчивались неудачей не только из-за недостатка знаний, но и по причине отсутствия пригодного двигателя. В равной степени верно утверждение, что появление нового двигателя, более легкого и мощного или основанного на другом принципе создания движущей силы, приводит к революционному прорыву в развитии авиации.

Теоретические основы полета аппаратов тяжелее воздуха были разработаны Н. Е. Жуковским в начале XX века. Необходимые экспериментальные данные были получены еще в XIX веке А. Ф. Можайским, О. Лилиенталем и др.

Попробуем ответить на самый главный вопрос: почему самолеты не падают на землю, несмотря на то что на них действует сила тяжести?

Ограничимся упрощенной схемой, в которой воздух будем приближенно считать несжимаемой жидкостью. Тогда для горизонтального потока воздуха,обтекающего самолет, будет справедливо уравнение Бернулли :

ρν 2 /2 + p = const , (1)

где ρ - плотность воздуха, p - давление, а ν - скорость воздуха, обтекающего самолет.

Из формулы (1) следует, что чем больше скорость воздуха, тем меньше его давление, и, наоборот, чем меньше скорость воздуха, тем больше давление.

Крыло самолета, если посмотреть на него сбоку, имеет вид, показанный на рис. 1.

Верхняя часть крыла более «выпуклая», чем нижняя. Из-за этого воздух, который обтекает верхнюю и нижнюю части крыла, за одно и то же время, движется быстрее НАД крылом, чем ПОД крылом: время-то одно и то же, а путь сверху больше, чем путь снизу.

Поэтому давление воздуха на крыло сверху, согласно уравнению Бернулли, оказывается меньше, чем давление снизу. Из-за разности этих давлений и возникает подъемная сила, которая уравновешивает в полете силу тяжести.

Еще один «подъемный эффект» возникает за счет того, что крыло располагают под определенным углом α к направлению встречного потока воздуха, который называется углом атаки (рис. 2).

За счет этого сила давления на крыло со стороны встречного потока воздуха (сила R на рис. 2) направлена под некоторым углом к горизонту. Вертикальная составляющая этой силы (Y , рис. 2) вносит свой «вклад» в формирование подъемной силы крыла.

А горизонтальная составляющая (X , рис. 2) - это так называемая сила лобового сопротивления , которую «преодолевает» сила тяги самолета, развиваемая двигателями.

Ясно, что сила лобового сопротивления действует не только на крыло, но и на корпус самолета.

При обтекании крыла воздухом направление движения воздуха отклоняется от первоначального. Воздух как бы «поворачивает» под действием крыла. Н. Е. Жуковский показал, что крыльевой профиль можно заменить эквивалентным вихрем или вращающимся цилиндром. Направление вращения вихря (цилиндра) такое, что нижняя половина движется навстречу потоку, а верхняя по потоку. Данный эффект носит название «Эффект Магнуса». Желающие могут изготовить воздушный винтороторный (или «вингроторный»; «вингротор» в переводе с английского - «вращающееся крыло» ) змей «Ротоплан» и лично убедиться в существовании аналогии (рис. 3).

Кроме этого, из подобной аналогии следует, что каждое крыло рождает вихрь, стекающий с конца крыла. Энергия вихря рассеивается в пространстве. Например, вихрь можно обнаружить, если самолет пролетает в облачности.

Другие варианты «Змеев Магнуса» и инструкции по их изготовлению можно найти .

Центром давления (ЦД , рис. 2) называется точка приложения равнодействующей сил давления воздуха, распределенных по всей поверхности крыла. Иными словами, все силы, действующие со стороны воздуха на самолет, можно теоретически заменить одной силой, приложенной к самолету в точке, называемой центр давления. При этом характер движения самолета от такой замены не изменится.

Центровкой называется взаимное расположение центра тяжести и центра давления. Обычно применяется «передняя центровка», то есть центр тяжести стараются расположить перед центром давления (рис. 4 и 5). Но иногда центр тяжести располагают за центром давления (рис. 6 и 7). Такая конструкция называется «уткой».

Для устойчивости полета необходимо, чтобы при малом повороте корпуса самолета в вертикальной плоскости возникал «возвращающий» момент сил, который бы возвращал самолет в исходное положение, причем такая «саморегуляция» должна проходить в автоматическом режиме, без участия пилота.

Эту задачу решает хвостовое «оперение» самолета, которое называется стабилизатором. При небольшом отклонении хвоста самолета вверх или вниз в стабилизаторе возникает дополнительная сила, поворачивающая самолет в исходное состояние.

Летательный аппарат имеет шесть степеней свободы: три перемещения (вверх-вниз, вправо-влево, вперед-назад) и три вращательных движения (курс - в горизонтальной плоскости, тангаж - в вертикальной плоскости, крен - в плоскости, перпендикулярной оси летательного аппарата).

По мере развития авиации видоизменялись как очертания самолета, так и механизмы управления самолетом. Назовем важнейшие из них.

Элероны - поверхности на задней кромке крыла, способные отклоняться на небольшой угол относительно поверхности крыла. Служат для выполнения разворотов в плоскости, перпендикулярной оси самолета.

Рули высоты - поверхности на задней кромке стабилизаторов, также способные отслоняться на небольшой угол служат для выполнения разворотов в вертикальной плоскости.

Руль направления - поверхность на задней кромке киля самолета, служит для выполнения разворотов в горизонтальной плоскости.

Известны следующие типы крыльев самолета (геометрии крыла): «прямое», «стреловидное», «треугольное» и «интегрированное».

Прямое крыло - характерно для первых самолетов, а также современных самолетов, летающих на скоростях меньше 700 км/ч. Для самолетов со скоростью движения меньше 160 км/ч применялись и применяются до сих пор парные прямые крылья, расположенные одно над другим, - так называемый «биплан», а иногда и три прямые крыла, расположенные одно над другим, - так называемый «триплан».

Стреловидное крыло - появилось при приближении скорости полета к величинам порядка 800–900 км/ч. Стреловидные крылья напоминают наконечник стрелы, то есть крылья образуют с корпусом самолета острые углы. Современные самолеты, летающие с большими скоростями, например Ту-160, выполняются с крылом изменяемой стреловидности, что позволяет развивать большую скорость в полете со «сложенными крыльями» и иметь низкую взлетно-посадочную скорость с прямыми крыльями.

Треугольное крыло - в настоящее время редко применяемая схема, использовавшаяся на самолетах со скоростью полета около 2000 км/ч. Треугольные крылья по форме напоминают треугольник.

В современных аппаратах применяется «интегрированное» крыло , когда корпус самолета является частью аэродинамической поверхности и также создает подъемную силу.




© 2024
digtime.ru - Digtime - Строительный портал